Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor
نویسندگان
چکیده
Keratinocyte growth factor (KGF), a recently discovered 18.9 kD member of the fibroblast growth factor family has been shown to selectively induce keratinocyte proliferation and differentiation in tissue culture. To explore its potential stimulating keratinocyte growth and differentiation in vivo, we analyzed for the influence of KGF on epithelial derived elements within a wound created through the cartilage on the rabbit ear. KGF accelerated reepithelialization (p = 0.004) and increased the thickness of the epithelium (p = 0.0005) when 4-40 micrograms/cm2 recombinant KGF was added at the time of wounding. The regenerating epidermis showed normal differentiation as detected by cytokeratin immunostaining. Remarkably, however, KGF stimulated proliferation and differentiation of early progenitor cells within hair follicles and sebaceous glands in the wound bed and adjacent dermis. There was a transient but highly significant increase in specific labeling of cycling cells in both basal and suprabasal layers that extended into the spinous layer of the regenerating epidermis. As an indication of specificity, the inflammatory cells and fibroblasts within the wound were not influenced by KGF. The results indicate that KGF is unique in its ability to accelerate reepithelialization and dermal regeneration by targeting multiple epithelial elements within the skin. These results suggest that KGF may induce specific epithelial progenitor cell lineages within the skin to proliferate and differentiate, and thus may be a critical determinant of regeneration of skin. Furthermore, these findings illustrate the potential capacity of this system to analyze epithelial differentiation programs and disorders of epidermis, dermal glandular elements, and hair follicles.
منابع مشابه
Increased keratinocyte proliferation by JUN-dependent expression of PTN and SDF-1 in fibroblasts.
In skin, fibroblasts of the connective tissue play a decisive role in epidermal homeostasis and repair by contributing to the regulation of keratinocyte proliferation and differentiation. The AP-1 transcription factor subunit JUN plays a crucial role in this mesenchymal-epithelial interplay by regulating the expression of two critical paracrine-acting cytokines, keratinocyte growth factor (KGF)...
متن کاملEffect of One Time Irradiation of Uvb Non Keratinocyte Growth Factor Gene Expression in Mice
Purpose: Skin is continuously exposed to many hazardous environmental factors such as ultraviolet radiation (UV). Many investigations have been shown to cause skin damages. The aim of present research was to study the effect of a single time of UVB radiation on the expression pattern of keratinocyte growth factor (KGF) gene in mice. Materials and Methods: UVB (30 mJ/cm2 and 50 mJ/cm2) were rad...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملHepatocyte growth factor (HGF) acts as a mesenchyme-derived morphogenic factor during fetal lung development.
Mesenchymal-epithelial tissue interactions are important for development of various organs, and in many cases, soluble signaling molecules may be involved in this interaction. Hepatocyte growth factor (HGF) is a mesenchyme-derived factor which has mitogenic, motogenic and morphogenic activities on various types of epithelial cells and is considered to be a possible mediator of epithelial-mesenc...
متن کاملIsolation and Cultivation of Adult Human Keratinocyte Stem Cells for Regeneration of Epidermal Sheets
Background: Keratinocyte stem cell is one of the adult stem cells that inhabits the skin and contributes to skin function and renewal. Adult stem cells are best defined by their capacity to self-renew, and to maintain tissue function for a long period of time. These findings indicate the importance of these cells for clinical applications including regenerative medicine, tissue engineering and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 179 شماره
صفحات -
تاریخ انتشار 1994